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ABSTRACT

We prove an existence theorem locally in time for quasilinear hyperbolic

equations, in which the coefficients are allowed to depend on the history of

the dependent variable. Singular perturbations, which change the type of the

equation to parabolic, are included, and continuous dependence of the solu-

tions on the perturbation parameter is shown. It is demonstrated that, for a

substantial number of constitutive models suggested in the literature, the

stretching of filaments of polymeric liquids is described by equations of the

kind under study here.
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SIGNIFICANCE AND EXPLANATION

In an earlier report [23], I proved an existence theorem locally in time

for a class of parabolic differential-delay equations modelling the stretching

of filaments of polymeric liquids. For many materials, however, the term

determining the parabolic nature of the equation seems to be very small. The

question was therefore raised whether an existence theorem could still be

proved in the limit when this term tends to zero. This paper gives a partial

affirmative answer to that question. For a broad class of constitutive assump-

tions suggested in the rheological literature, the problem can be described by

quasilinear hyperbolic equations. We prove an existence theorem for these,

and we also prove continuous dependence on small parabolic perturbations. The

results are based on theorems due to Kato. In one respect the problem studied

here is different from the one in [23]: Instead of a filament pulled at its

ends, we study an infinite filament under the influence of a longitudinal body

force. It is hoped that similar results can eventually be obtained for the

former - physically more relevant - problem and also for more general flow

geometries.

LD "

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



SINGULARLY PERTURBED HYPERBOLIC EVOLUTION PROBLEMS WITH INFINITE DELAY

AND AN APPLICATION TO POLYMER RHEOLOGY

Michael Renardy

1. Introduction.

In a recent paper (23], I proved an existence theorem (locally in time)

for solutions to a class of quasilinear parabolic differential-delay equations

that can be used to model the stretching of filaments of polymeric liquids.

Such equations arise, if the constitutive law is such that, besides an "elastic"

part which is a functional of the strain history, the stress has also a

Newtonian part. For many materials, e.g. molten polyethylene, however, this

latter contribution is small. This warrants a theory that can treat the

Newtonian contribution as a perturbation rather than as the "leading" term in

the equation.

In the present paper, I shall give a partial solution to this problem.

Mathematically, we are concerned with differential equations of hyperbolic type

with a small perturbation changing the type to parabolic. A mathematical theory

applicable to such problems was developed by Kato [12], [14-16]. (My results

in [23] were based on the theory of Sobolevskii (25]). Since Kato's theory is

more easily applicable to pure Cauchy problems than for mixed initial-boundary

value problems (some results concerning the latter are in [16)), we confine

our attention to the former class of problems here. Physically, this means

that rather than a filament pulled at its ends, we will study the deformation

of infinite filaments subjected to longitudinal body forces. It is hoped that

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
Deutsche Forschungsgemeinshaft. The research leading to this paper was
started at MRC and concluded at the Deptartment of Aerospace Engineering,
University of Minnesota.



further research will lead to similar results for the boundary value problem

and also for more general (in particular more than one-dimensional) flow geome-

tries. It is clear that the results we obtain apply to other one-dimensional

problems in continuum mechanics, e.g., those discussed in [61, [9].

In Chapter 2, I quote those results of Kato's theory that are needed in

this paper. One of Kato's results will be mildly generalized. In Chapter 3,

these results are applied to a class of singularly perturbed quasilinear hyper-

bolic differential-delay equations, which have the following form

(1.1) Putt°'Ot =n.(f u ) +h utt + k + , x R.

n n-1 n-2
Here n is a small non-negative constant, 0 is a given function of x

and t, and f,h,k are functionals of the histories of derivatives of u,

which are of lower order than those displayed. It is assumed that f and

h take posi-tive values. Under appropriate assumptions, we prove that the

initial history problem associated to (1.1) has a unique solution locally in

time, and, more-over, that this solution depends continuously on n,

including the limit n + 0. In representing differential-delay equations as

abstract evolution problems, we follow the method outlined in [23] rather than

the classical approach [11].

Chapter 4 deals with the problem of stretching filaments of polymeric

liquids. We use a one-dimensional approximation to this problem based on the

thinness of the filament [23]. Various constitutive models suggested in the

rheological literature 11-5], [8], [101, (13], (17-22], [27] are discussed.

It is shown that, for all these models, an equation of the form (1.1) is

obtained.

The diversity of the models studied here illustrates the fact that - at

least yet - there is no particular constitutive law successfully describing

all the phenomena in polymer rheology. Whether or not one constitutive law
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can fully describe a substantial number of materials, is not yet known. As

pointed out in [26], a "theory of theories" is needed. The approach towards

this goal taken here, however differs from that in [26). Whereas there the

main emphasis is laid on results obtainable from general principles of con-

tinuum mechanics or thermodynamics, I found it worthwhile to look at the

models suggested by rheologists, and I tried to work out common mathematical

structures. If these exist, they can be hoped to persist also in a more

accurate description, to which the models are more or less successful

approximations.

One crucial feature that we have found common to all the models under

study here is that, under appropriate assumptions on the kernels of the memory

integrals, it is possible to rewrite the equations in such a form that the

highest order derivatives occur only by their present values (in this context,

cf. [241). More specifically, for some n e N, the nth time derivative of

the stress depends linearly on the nth and (n+1)st time derivatives of the

strain with coefficients depending on the histories only of lower order

derivatives. One might regard this as a very general formulation of the

ancient idea that polymers combine "elastic" and "viscous" effects. The

oldest models suggested a linear superposition. What we have here may be

called a "quasilinear" superposition.

It is essential in our development that the integral kernels occuring in

the constitutive equation are sufficiently smooth everywhere, in particular,

that they are bounded. This assumption has also been made by other authors

(91, (301, (311. Both molecular theories and experiments suggest, however,

that the kernels may have a singularity (see the remark at then end of Ch.

4). Further research needs to be done on this point.
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2. Abstract Hyperbolic Equations.

in this chapter, I summarize the results from Kato's theory that will be

needed in the following. One of Kato's theorems will be generalized.

We study an evolution problem of the form

(2.1) u - A(t,u)u + f(t,u), 0 4 t < T, u(O)

where u takes values in a Banach space X and A(t,u) is a linear operator

depending on t and u. Our assumptions will involve further Banach spaces

Y and Z such that Y c Z c X with continuous and dense embeddings. It is

assumed that Y, Z and X are reflexive and separable. Let W denote an

open set in Y.

First, we quote Theorem I from (121 in a simplified form (with assump-

tion N being obsolete) It is assumed that the following estimates hold for

t,t,**.o e 10,T] and w,w',ooe e W (K denotes a generic constant indepen-

dent of t and w):

(Si) There is an isomorphism S(t~w): Y + X satisfying

IS(t,w)I Y ( K, US- (t,w)E (, K

IS(t',wl) - S(t,w)I Y ( K(jt-t'j + Vw-w11E

(Al) A(t,w) generates a quasi-contraction semigroup in X uniformly

with respect to t,w: le A(tW)T I X, 4eKT

(A2) S(t,v) A(t,w) S-1 (t,w) = A(t,w) + B(t,w)

where B(t,w) eR B(X), IB(t,w)I ', K

WA) A(t,w) Q B(Y,Z) with IAt,w)I Y ( K

and IA(t,wl) - A(t,w)I Y ( KIw'-wt

The napping t 1- A(t,w) 6Y B(Y,X) is norm-continuous.

(AC) There is some yo G W such that

A(t,w)y 0 Q Y and OA(t,w)y 0 1 K

(fl) f(t,w) 6 Y, If(t,w)I Y K, If(t,w') - f(t,w)I X KIw'-wI



Moreover, the mapping t F* f(t,w) G X is continuous.

Theorem I in [12] reads as follows.

Theorem 2.1:

Let (S), (A1)-(A4) and (fl) hold. Then there is a positive P and a

positive T' 4 T such that for I*-y 0 1 P, equation (2.1) has a unique

solution u 9 C 0((O,T'I;W) n C I([O,T');X). P and T' depend only on K and

the distance of yo from the boundary of W.

The second theorem stated in this chapter is a continuous dependence

result. It generalizes Theorem II of [12] insofar as it allows S to depend

on w. We adopt the following assumptions:

(S2) There is an open set W4' c Z such that W c W' and the following

holds. The definition of S(t,w) G B(Y,X) can be extended to w G WI.

Moreover, we have uniformly on [0,T] x W':

IS(t,w)I 4 K, ID S(t,w)I 4 K, 10 S(t,w)I 4 K
YX w Z,B(Y,X) t YX

IS~t'w') - S(t'w)I ' 4 Kjw'-wIz f ID wS(t,w') - D wS(t,w)I ,(YX

4 K~w'-wE , ID tS(t,wl) - D tS(t,w)I Y ( K~w'-wI2Z

Here Dw and Dt denote the derivatives w.r. to t and w.

(AS) IB(t,w') - B(t,w)I X K~w'-wI

(A6) IA(t,w) - A(t,w')I Y ( Klwl-wI

(U2) If(t,w') - f(t,w)I Y 4 K~w'-wI

L~t us now consider a sequence of evolution problems (n 6 N)

(2.2) n = A( t,un)un + f(t,un), 0 4 t 4 T, un(0) . n

Theorem 2.2.:

Assume (Al)-(A6), (fl), (f2) are satisfied uniformly in n and assume

(SI), (S2). (The operator S shall not depend on n.) moreover, assume

n~ -yO, Y<p, #-y0 I~ Y<P with P as of Theorem 2.1. Finally, assume that
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for t,w 0 [O,T) x W

A n(tw) + A(tw) strongly in B(Y,Z)

Bn(t,w) + B(tw) strongly in B(X)

fn (t,w) + f(t,w) in Y

as n + -. If *n + * in the Y-norm as n + 0, then there is a To < T

such that (2.2) has a solution un 6 C ([O,T"IIX) n C0([O,T"],W) for any

n. Moreover, un(t) + u(t) in Y, uniformly for t G [O,T"J, where u is

a solution of (2.1).

Proof:

The proof essentially follows the same line of argument as that in (15).

Theorem 2.1 yields the existence of solutions to (2.2) and the limiting equa-

tion (2.1) on some interval [O,T] with T' independent of n. It is more-

over proved precisely as in (151 that un + u uniformly in t in the X-

norm. To prove convergence in the Y-norm, we rely on Theorem IV of [14].

This involves estimating a number of terms. Most of those estimates go as in

[151 or are straightforward, and my exposition will focus only on those terms

that present difficulties. As in (153, it is used that un solves the linear

equation

(2.3) n . An un + fn,

with An  An(t,un) and fn = fn(t,un). The limit u solves the linear

equation

(2.4) u =Au + f

with A = A(t,u), f = f(t,u). From (14], Theorem IV, we have the estimate

un-ul U Kn_,, + *fn-f,

+ KIS n(O)-S(O))fI + I(Sn-S)fg + ISn-S)ulx
X 1,X

+ K((B n-B)SuIIX + I(Cn-C)SuIX

+ x~lun-u)(8 a * 0 g)1Wx
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Here Sn denotes S(t,un), Bn denotes B(t'un). The symbol C srand-; for

;SI The ULJ are the evolution operators associated with A,An.

Finally, *S denotes S(O)*, and g stands for Sf + (C-B)Su. The indices

1 and 00 indicate the L -and Lo -norms on the interval tO,T"]. On the

right hand side of (2.5), the term i n_ I converges to zero by assumption

and we are left with seven more contributions. Of these, the first, fifth and

seventh have been dealt with in (151, and no change in the argument is needed

here. The second, third and fourth term are estimated in terms of l n

and lun-ut. by virtue of (Si). Now, note that

lun-ul. 4 KMl n_,, + Eu -u4 1 4 K(I* 0
ZZ 1'Z

+ IA' nn + ff n-_Au -fl ).Z

The last term will be estimated below. We may thus focus on the term

I(n -n n -1 --1_( C) Sul 1' (5 (S ) S )SulI'X

I .Sn)U + Is ((S )- _-I )Suli~x

By (S2), ;n is bounded in B(Y,X), and by (Si), 1(Sn) -_S I IXYcan be

estimated by Eun-ul. . This takes care of the second term. For the first, Z

term, observe that

;nt _S S(t,un(t)) = S(t,un(t)) + D S(t,u (t))u (t)
dt U

; (t,unCt)) + D uS(t,un(t)) (A n(t,un)un + fn(t'un))

and likewise

;(t) ; (t,u) + D US(t,u) (A(t,u)u + f(t,u)).

We have

l(S(t,un) _ S(t,u))Ul 4 IS;(t,un) - (t,u)E RUN.

4 K~nujIZ 4 IU~liY

and
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I(D uS(t,u'(t)) - D uS(t,u(t)))(A' (t,un(t))un(t) + fn(t,un t)I19YX

ek lCD S(t' U (t)) - D S(t,u(t))t IA nu n + ffl I"u u 1,Z,B(Y,X)

n n
ft Kl u -ul 1' Kl u -uI i

Finally,

*IA nun+fn -Au-fl ,Z

This last term can be estimated by

IA n (t,u)u - A(t,u)u I' + Ifn(t,u) _ f(t,u), '

" I(A' (t,un) -A (t,U))ul 1Z+ NA n(t,un)(un-u)l '

" If n (t,u n) -fn(t,u)l ,Z

It follows from Assumptions (A6), (f2) that the last three terms can be esti,-

mated by lu n-uI I,* The first two contributions converge to zero because z~t

the assumptions of the theorem. Thi~s concludes the proof.

-9-



3. Application to Delay Equations.

In this chapter, we shall apply the preceding results to differential-

delay equations of the following form

U (n-1) =(f(UxU xt,'°,Ux(n-4) )Ux(n-2))x

(3.1)

+ h(uxUxt,°',Ux(n_3) ;)Uxx(n_3)

H k(Ux,"te d ,x(n_3) ;Uxx, ,Uxx(n_ 4 ) 0) + *(tx).

Here, the index (k) stands for k-fold differentiation with respect to the

time variable t, and the hat denotes the past history: U X(tx)(S) =

ux(t+S,X) for S e (-0,0]. The fh and Z are smooth functionals on a

history space, the topology of which will be specified later.

Differentiating (3.1) with respect to x , we obtain

U x(n_1) =n(f(ux,uxt,°'°,U x(n_4) )U x(n_2))XX

(3.2)

" h(Ux'uxt'O'''Ux(n-3);)U xxx(n-3) ' ax 0 Uxx(n-3)

(k(ux , .,U x(n_3) ;Uxx, 'Uuxx(n-4) ;7))X+ (x).... + *(t,x),

where * = In the following, we need only be concerned with

equations of the form (3.2). For applying the results of Chapter 2, it is con-

venient to rewrite (3.2) as a system of equations. Let us put vk = Ux(k) ,

wk = Uxx(k ) . We thus obtain the following system equivalent to (3.2)

-10-



Vkt - Vk+1 k - 0,1,...,n-3

Wkt - wk+1  k = 0,1,*-',n-4

( .. + h(v o.."v ,w
(33) Vn-2,t f0 Vn-4 n-2)xx ' n-3 n-3,x x Wn-3

+ (k(v 0 ,...,v n 3 ;w 0 ,*.,n4w 4 n))- + 

W- 3 ,t Vn-2,x*

It will be advantageous to make some further substitutions. Let us put
v' 2 =fv 2 , w% = ffv + - k. Then we obtain the following system

n-3 wn-3 +-
Vh

Vkt = Vk+ 1  k = 0,1,.'.,n-4
V - V-

Vn-2
Vn-3,t f

w kt = Wk+1 k =0,1,0*,n-5

I * k
w 1 -we
n-4,t f/h n-3 h

+ f a h 2f)v' = lf v + /hw' +(f - h )
(3.4) n-2,t n-2,xx n-3,x '2 x ax

VI
f k' n-3f n-2(-2-w' )vhk-) a f-. -

/ af a
/h- v. (f/lh)

n-3,t n-2,x f ax Vn-2 +t

f/- h at rh

Next, let us define the history spaces, in which (3.4) will be analyzed.

Definition 3.1:

For a given Banach space Z, let H (Z) denote the space of all func-

tions (-0,0] + Z, which are the sum of a constant element z0 e Z and a

function z(t), which is square integrable and has a square integrable deriva-

tive (in the Bochner sense). Analogously, let L2(Z) be the space of all

functions (-m,01 + Z, which are the sum of a constant and a square

integrable function.

-11-



*-1 shal-denot 'n( m ( )

In particular, H shall denote HI(R) and H shall denote l(H (R))
m

where Hm(R) is the Sobolev space of all functions R + R, which have n

square integrable derivatives. Analogously, let L2 = Z2 (Hm(1)).
m

Remarks:

1 im
1. In [23], I used the space Cb (the space of bounded continuous func-

tions having a limit at -1. The reason why this space cannot be used

here is that it is not reflexive as required by Kato's theory.

-1
2. The choice of the space H seems to impose rather restrictive conditions

on the given history. However, as in [23), one can allow histories in

more general spaces, e.g. "fading memory" spaces [7], by reducing the

problem to one that has a history in H1, but is equivalent to the given

one for t > 0. The only modification necessitated by this is that

f,h,k must be allowed to depend explicitly on x and t. This

modification presents no major difficulties.

As in (23), we define a shift operator TS on W 1:T s(t) = *(t+s) for

S e (--,0].

Our assumption on f,h,k in (3.3) are as follows:

(i) The mappings f:( 1)n-3 + R, h:(H) n- 3 x R + R and

k:(H )2 n-3 x R + R are smooth (i.e., sufficiently often

continuously differentiable) and the induced operators f,h,k

defined by f(f)(S) -f(T s) map into H and depend again smoothly

on their arguments. Moreover, f and h take strictly positive

values: f £ > 0, h ) C > 0. k vanishes if its arguments are

zero. Moreover, the Frechet-derivative Df is a linear operator

-2 n-3
from (L into R, which depends smoothly on the arguments of

f (in the topology of HI), and the corresponding operator Df maps

into 2 and again depends smoothly on the arguments of f.

Analogous conditions hold for h and k.

-12-



The following lemma is easily proved.

Lemma 3.2:

If (i) holds, with a sufficient degree of differentiability, then f

defines in a natural way (acting pointwise in the space variable x) a smooth

-1 n-3
operator from (H) into + R. Here m is a given integer greater or

m m

equal to 1. The same holds for h,k, and an analogous statement also holds

*2 n-3 -2 2n-3 -2
for Df, Dh, Dk (regarded as linear operators (L ) or (L ) * L ).

Remark:

Since we are concerned with existence theorems locally in time, it is

clearly sufficient that condition (i) holds in a neighborhood of the pre-

scribed initial condition.
n-2 ^

Let us also note that 1 -2 Dih(v0 ' *'Vn-3 ;)wi-1' where

denotes the Frechet derivative w.r. to the ith argument. Analogous

manipulations are possible for the other x- and t derivatives of f,h

and k that occur in (3.4). As in (23], let us assume that the given initial

history up to time t=O satisfies the equations (this can be achieved by

appropriately changing *. We can then rewrite equation (3.4) in the

following abstract form

Vkt =Vk+1 0,1,09,,n-4

wkt = wk+ k =,

v We
n-2

(3.5) Vn-3,t f

n-3 k

Wn-4,t f

v = f v + Vh w' + "'. +
n-2,t n-2,xx n-3,x

w' O/ v# + o

n-3,t n-2,x

-13-



where f,h etc. are defined as in Lemma 3.2. Now let the spaces X,Y be as
= 1 .2 2n-5 -2 2mn-5

follows: X =( y n L ( , where m is an odd number
1 4 L m)

greater or equal to 3. Finally, let Z = (Hm-2 0 L+1) . When identifying

(3.5) with the abstract system (2.1), we incorporate in A only those terms

that contain derivatives w.r. to x, everything else is included in f. With

this identification, the conditions (A3), (A4), (fl), (A6) and (f2) are rather

obvious, (note that, for m > 3, H n is a Banach algebra) provided
m m+3

that the following holds:

(ii) takes values in H (it follows automatically that it is continuous

-1
into H ), and the initial condition at t=O lies in Y.

M

For verifying the remaining conditions, we have to study the operator

A(f,h), defined by

A(f,h)(v,w) - (TI V + fw ,^ V

The operator S is defined by S = -- _ A) 2  for A e R large
ax

2

enough. With this choice of S, conditions (Si), (S2) are obvious.

Moreover, one sees easily that

2 2AAax2  ax 2

yields an expression involving only first and second order derivatives of

v,w,f and h. From this it is not difficult to conclude (A2) and (A5).

(Note that TnA-ATn = T n-1 (TA-AT) + Tn-2(TA-AT)T + and apply this

with T = 2 A,. For (Al), we have to show that Re(A(v,w),(v,wj) 1 2

C((v,w),(v,w)) which follows from a simple integration by parts in the

x-variable.

-14-



We have thus proved:

Theorem 3.2.

Let (i), (ii) be satisfied. Then there is a T > 0 such that (3.5) has

A A *1 0
a solution U - (v0 ,v1,***,w2 ) e C ([0,T)JX) n C ([0,T]IY). U depends

continuously on n e [o,n 0] in the norm of Y.

-15-



4. Stretching of Filaments of Viscoelastic Liquids.

We are studying the motion of an infinitely extended filament of an incom-

pressible viscoelastic liquid under the influence of a longitudinal body

force. It was shown in [23] that, if the filament is thin, this problem can

be modelled by a one-dimensional approximation, where only longitudinal mo-

tions need to be studied. Let u(x,t) denote the position of a fluid par-

ticle at time t, which is at the position x in certain reference state.

For simplicity, this reference configuration is chosen to be one in which the

filament has uniform thickness. I showed in [23] that the evolution of u is

governed by the following equation
(4.1) 11 -2 22)

tt x x x

In this equation P denotes the density of the fluid (i.e., a constant), *
11 22

is the given body force, and Wi , W are the longitudinal and transverse

components of the convected extra stress tensor (ite., not including the pres-

sure, which was eliminated in the derivation of (4.1)). The tensor w is

related by a constitutive law to the right Cauchy-Green tensor Y (in our no-

tation we follow [22]). In the approximation leading to (4.1), Y is given

by

u 2 0 0x

0 0 Ux

In the following, we discuss various constitutive laws that have been sug-

gested in the rheology literature and the corresponding equations (4.1) that

they lead to. It will be shown that all these equations can be transformed to

the form (3.1). In particular, we shall check the positivity of the func-

tions f and h. (It will always be understood that u is the sum of a

given function u0 (x,t) and a function tending to zero appropriately as
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x + e', moreover, ux  is always assumed uniformly positive. In comparison

to Chapter 3, the variable called u there will be identified with u-

u0 (x,t) in this chapter.) The notation used in the original papers cited

here is often different from ours, and we have transcribed the constitutive

laws appropriately. Tables of some (but not all) constitutive assumptions

discussed here can be found in [21 and [22].

a) The rubberlike liquid of Green and Tobolsky (10] and Lodge [19], [20] and

modifications of Ward and Jenkins [271 and Lodge [21].

In these theories, the constitutive law has the following form

-n a (Y- I1 + ftat-s)Y-1 (s)ds - ft b(t-s)Y - (t)Y(s)Y -1 (t)ds

-1t 1d -1
+ ft c(t-s)Y-(s)Y(t)Y -(s)ds + ft d(t-s)(Y(t):Y-(s))Y-(s)ds.

The first term is a Newtonian contribution, the second is the one given by the

rubberlike liquid theory (101, [19], [20). The third term accounts for a

modification suggested by Ward and Jenkins [27], and the last two represent

corrections of Lodge [21] (Lodge finds c=2d from a molecular theory, but we

shall make no use of this). With this constitutive law, Equation (4.1) as-

sumes the following form

PU 3n - ,I- - ) + {U(t) ft(c(t-s)+d(t-s))u-4s)dstt 3 -t -j -ix X

+ u (t) ft a(tS)u -2 s)ds + ft b(t-s)+d(t-s))ux1(s)ds

- W(t) f a(t-s)u (s)ds - u- 3(t) ft (b(t-s)+c(t-s)+2d(t-s))u 2 (s)ds}
-mx x -40 x

In order to obtain the form (3.1), we differentiate this once with respect to

time. This yields
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uu
Pu 3 uxt-6n xx •~t +{_ *(12 r 3t + 3u 2

ttt  3 x
u u ux x x

ft (c(t-s) + d(t-s))u4 s)ds + ft a(t-s)u -2s)ds + 2u
- 3

x -6x x

jt a(t-s)u (s)ds+3u 4 (t) f ft (b(t-s)+c(t-s)+2d+t-s))u 2..-.) +
x x ODx

Here, as always in the following, the dots indicate terms involving only lower

order derivatives of u and the derivatives of 0 (f is always assumed

"smooth enough"). We have assumed here that the kernels have derivatives in

L1  so that

d ft a(t-s)f(s)ds a",t-slf(s)ds + a(O)f(t).

The equation above clearly has the form (3.1), and the coefficient of Uxx t

is positive if the kernels aze pos.Ltlve and n is small enough.

b) The model of Kaye [17. ard ..arnstein, Kearsley and Zapas Eli.

In this model, the constitutive law has the form

W= ft a(t-s,l1 ,I2 ) - (s)ds - ft b(t-s,, 12 )Y-(t)Y(s)Y-1 (t)ds.

I, and 12 are the invariants of Y' (t)Y(s):I1 = trlY(t)Y (s)) and 12 =

tr(Y- 1(t)Y(s)). In our special problem, we thus have 11 = u 2(t)u-2 () +
x x

2ux 1t)u (s) and I2 = u 2(s)u - 2 (t) + 2u (s)u (t). Both are thus functions
x x 2 x X x X

u (t)

of the single variable I = x and we shall use the obvious notation

a(t-s,I), b(t-sI). The dynamic equation (4.1) assumes the form

S L- (t) ft a(t-s,T)u"(s)ds + ft b(t-s,I)ul (s)dstt Max {

-U (t) f a(t-s,I)u (sds - u 3 (t) a b(t-s,I)u 2 ds) + .

By differentiation with respect to time, we find
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Puttt  u t{ a(t_s,i)Ux2 (s)ds + 2u-3(t) ft a(t-s,I)u (s)ds
-m xt x

+ 3ux4 ft b(t_s,i)u2(s)ds + u It la -3

+ft 8b (t-sI)u-2 (s)ds _ u 2 (t) ft 8a (t-s,I)ds

-3 Wt ft lb (t-s,IluS)ds} +

A Newtonian term can be added to this as before. Suppose the kernels a,b

are positive. Then the coefficient of uxx t  is positive in two cases:

aa b mIf , are small, i.e., if the model is considered a

perturbation of the Ward-Jenkins model.
I a aa Sb ab

B) If 1 1j, i . j, j are positive. It would be interesting if

this condition has a physical interpretation.

c) The Bird-Carreau model (31, [51.

In this model, we have
C t - t -1t-

01 + -) a(t-s,I(s))Y-l s)ds - ft a(t-s,I(s))Y-l(t)Y(s)Y-l(t)ds
2 2m

2
-1m -1-(s

* xtwhere I(s) - tr(Y(s)Y (s)(s)(-l(s)) = 6 ul,).

This leads to the equation

I Put-( + E-.) -.u ft a(t-sI(s))u()ds
I 2 x2 ft

-2 1t a(t-s,Il(s))u (s)ds)
x

CS ft a(t-s,I(s))ux (s)ds

-3 f

- ft) a(t-s,I(s))u 2 lslds} +x x
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Differentiating this w.r. to time, we find

£
Put =u [( + ){ ftalt-s, ls)u-2lsld s + 2u-3(t) ft a(t-s,I(s))u (s)dslx x x

rt 2

+ 3U-4 ft a(t-s,Ils))u (s)dsl

a 2 10-+,t aa )u-2lsds
at 2 xut N-

u-2 ft 3(ts,(s)) (s)u (slds) + ( ft J a(tsI(s))x Ma x x 2 _. 5(-

I (S)u- (slds - u- 3 ft aax (t-s,(s))I(s)u(s)ds] +

A second differentiation yields (the kernels are assumed to be twice

differentiable w.r. to time

Putttt = Uxxtt((1 + 1{ fat-s,lsx))2 (s)ds

+ 2u- 3 ft a(t-s,I(s))u (s)dsl
x -,x

C -4 ft atsls
+ 3u f at-s,Ils)u 2 (s)dsj +

For a positive kernel, the coefficient of uxxtt is positive.

d) The Carreau Model B (41.

In this model, it is assumed that
C t -1

N 1 + i) J exp(- ft fIr))dr)y- (s)ds
-m

ft exp(- ft f(I(r))ds)Y- (t)Y(s)Y-l(t)ds,

-. S

where I has the same meaning as in the Bird-Carreau model. We thus obtain

the following equation
t /t €j)( (u2S-u2( s

Put " { ft exp(- ft f(I(r))dr)((1 + u-)(U (t)u (t)u (s))
+ ax - 2 x x x x

+ -(u C1(S) -3 Mu 20(s))ds) +.2 x x x
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The integral converges, if f takes strictly positive values. Differenti-

ating with respect to time, we obtain

Outt= u t{ ftexp( - ft f(I(r))dr)[(1 +-1)(u-2(s) + 2u3 (t)U (s))

+. 3u-4(tU 2(s)]ds) + t{- ft exp(- ft f(I(r))dr)2 x x

ft f,(I(r))I (r)dr[(i +-j)(ux(t)u(s) u-2(t)u (s)) +
x 2 2x x x

C 1 3 2+-U (S) - u (t)u (s))]ds) +2 (x ()-x x

The second differentiating with respect to time yields

PU SU ft( f(I(r))dr -)(u-2 (s) + 2u-3 (t)u (s))
tttt Uxxtt 2 x x x

+ 5 tU 2slds - 12 xt ft exp(-ft f(I(r))dr)f'(I(t))2+ x x u2 (t) -" s

x

* ((1 + 2)(u (t)Ux2 (s) - u-2(t)ux(s))

+ j(U-l(s) _ u-3(t)u2(s))]ds) +2 x x X

The coefficient of uxxtt is positive under the restriction that f'(I)/7 is

not too big.

e). The Leonov model (18].

This model does not explicitly give the stress as a functional of the

strain history. Instead it is given by a system of equations as follows

SI I (k)(112k) C- - w (k)(I kI )Y_ c k 1

k k k 2 1k 2k k

-n w(xl I 2) a (y-1)

Iv1 i ,1 -1 -1
"gk lk, 2k 3 2k k )
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-1 -1

where Ilk ' tr(ck Y), I = tr(Y-I c k). The tensors c satisfy the restric-
k kk k

tion det ck = 1 (it can be shown that det ck  is an in' iant of the evolu-

-1
tion equation). In Leonov's paper, the analogue of c 1is called ck, we

have changed this for consistency of notation. The W I  ,w2  fkk

positive scalar functions, they are not independent in Leonov's model. It is

convenient to introduce dk = Ck Y. With this, the constitutive equation

becomes

w~k)(Ilk'I 2 k)ay -
- W2 (Ilk' 2 k)d 1' - I

11 21

(4.2)
aI

~~(d) (d , 2 1 d
t(d k ) = -fk(IlkI2k) (dk - kd)

1 -1-
-gk(I lk,12k )( 11kk-1 + dk .

k 2k 3 I2kdk ky ~ ~

Ilk and 12k are the first and second invariants of dk, and we have det dk

= 1. If fk" gk have positive values, then, for = 0, the solution dk =

id is an exponentially asymptotically stable solution of (4.2) when this

equation is restricted to {dk detdk = 1). Consequently, if Y 1 ; 0 as

t + -M, then on some interval (--,T) there is a unique solution dk which

converges to the identity as t + -0. Whether this solution can be con-

tinued up to t = 0 depends on the form of fk' 9k and the history of Y.

We shall assume that (4.2) has a solution up to t = 0. Then this solution is
A

a smooth functional of the histories of Y and ;: dk = F1 (Y,Y). From

(4.2) or, resp., its differentiated version, we also find functional relation-

ships of the form d = F2(YY) dk = F,(Y,;) + dy-1V. For the filament

problem, Y is a diagonal matrix, and so is dk. Let us denote the 11- and

22-components of dk by dkl, dk2. The dynamic equation (4.1) reads now as
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follows
3 I- k (k) -

U_ =-(U [ W(k) (IlI )d - W (I ,I )d
tU WX x k I 1k 2k ki 2 k2k ki

W(k) ( I)d +W(k) (
SW I1k' 2k k2 2 lk

+ 3n W(I 1 1 ,I21) a 1 + *o

Retaining only terms of the highest differentiation orders, we obtain by two-

fold differentiation

tttt 11',21 2 xxttt +xttt o + t
u

x

-2 (k) (k) d-1 (k) -2 (k) 2

x  I kl 2 kl 1 k2 x 11 k1 k2
I 1 - (c I)-1 -1}

S2W (k)d-- I )2 + 2W (k) + (k) )(d - -)(d2 - d I )))22 k2 -k1 12 21 - k2 k2 kl

+ fe e

3w (k
)

(k) ____

Here W(k stands for - For small n, the coefficient of uxxt isij 81 jk -xt

• (k) w(k) (k) (k) .(k) + (k))2
positive in particular if W I 2 W) ,W)22 are positive and (W12 21

S4 w 1w k) This corresponds to inequality (1.33] in Leonov's paper.

f). The models of Johnson and Segalman (13] and Chang, Bloch and Tschoegl 128].

This model is described by the following system

it a(t-s)G(st)Y (s)G T(st)ds

aG -
= -a - (t)(t)G

G(t,t) = id

3G -a_ G - (s)y(s).

The parameter a ranges between 0 and 1/2- For our problem, y is diag-

onal, whence Y(t'),Y(t") commute for any t',t". The equations for G can

therefore be solved as follows.
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G(st) = exp(-a ft Y- (r)y(r)dr) = Y'(s)Y- (t).

This leads to an equation very similar to the ones studied in part a, and the

discussion follows closely the one given there. We leave the details to the

reader. For a in the range (0, 1/2 ), the coefficient of uxxtt turns out

to be positive. If a is allowed bigger than I/2, the type of the equation

may change from hyperbolic to elliptic.

The model of Chang, Bloch and Tschoegl is, for this particular problem,

equivalent to that of Johnson and Segalman.

g) The model of Curtiss and Bird (81.

This model proposes the following constitutive law

W ft f a(t-s)(1 + vT(Y(s)-y(t))v] - 3 / 2  T dv.

Y(t) /v y (t)v
T

-fl f f b(t-s)[1 + vT(y(s)-y(t))v]-3/2vTi(t)v vv dv.
- 0 2y t ! - 7y2( -t) vY~v 4Tt~

Here Q is the set 1t= [v T y(t)v = 1). With Li denoting the unit

sphere, this yields for our problem
11 it 2 22-

ftj f a(t-s)(1 + (u (t)u2(s)-1)w + (u (t)u•(s)-i)
x x x x

2 2 )-3/2 2 -2(w2 + w3 1 W Ux (t)dw
2 3 1 x

-n ft f b(t-s)[, + (u-2 (t)u2 (s)-1)w 2 + (u (t)u- 1 (s)-1)
Sx x X

2 2 -3/2 2-3 2 2 2
(w 2+w 31 w 1u t)U (t)(2w -w 2-w 3)dw.

~22 2 -2 2For , we have the same exprssion with w Iu replaced by w2u x  When

inserting this into the dynamic equation (4.1), we can again achieve the form

(3.1) by differentiating with respect to time. The term involving u has

a positive coefficient proportional to n, the coefficient of uxx t  is, up

to terms of 0(n)
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iii

lwr

tJa(t-s)[ I..-3/2 2 2 u-2(t)t at-)I"] (w -w )dwu )
1 2 x

3 rt -/ -4 2 2 -1 -
+ j Ialt-sl)(m]-5(2-2u-4(t)U (S)Wl + u (t)u-1(s)(w2+w3"

+7 -2 1 2 x 3

* 2 2

It can easily be checked that this coefticient is positive in a neighborhood

of the rest state.

Remark:

When we differentiated equations with respect to time, we have always

assumed that the integral kernels were sufficiently smooth. Some of the

kernels suggested in the literature have singularities at t = 0 (see e.g.
2

(81, where a(t) = e ). A mathematical theory accomodating such
odd

kernels would be of interest. Experimental data on polymer melts (see e.g.

1281) also seem to suggest that the integral kernel may be singular at t = 0.
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